6,311 research outputs found

    Reduced mechanical efficiency in left-ventricular trabeculae of the spontaneously hypertensive rat.

    Get PDF
    Long-term systemic arterial hypertension, and its associated compensatory response of left-ventricular hypertrophy, is fatal. This disease leads to cardiac failure and culminates in death. The spontaneously hypertensive rat (SHR) is an excellent animal model for studying this pathology, suffering from ventricular failure beginning at about 18 months of age. In this study, we isolated left-ventricular trabeculae from SHR-F hearts and contrasted their mechanoenergetic performance with those from nonfailing SHR (SHR-NF) and normotensive Wistar rats. Our results show that, whereas the performance of the SHR-F differed little from that of the SHR-NF, both SHR groups performed less stress-length work than that of Wistar trabeculae. Their lower work output arose from reduced ability to produce sufficient force and shortening. Neither their heat production nor their enthalpy output (the sum of work and heat), particularly the energy cost of Ca(2+) cycling, differed from that of the Wistar controls. Consequently, mechanical efficiency (the ratio of work to change of enthalpy) of both SHR groups was lower than that of the Wistar trabeculae. Our data suggest that in hypertension-induced left-ventricular hypertrophy, the mechanical performance of the tissue is compromised such that myocardial efficiency is reduced

    Variability, trends and predictability of seasonal sea ice retreat and advance in the Chukchi Sea

    Get PDF
    As assessed over the period 1979–2014, the date that sea ice retreats to the shelf break (150 m contour) of the Chukchi Sea has a linear trend of −0.7 days per year. The date of seasonal ice advance back to the shelf break has a steeper trend of about +1.5 days per year, together yielding an increase in the open water period of 80 days. Based on detrended time series, we ask how interannual variability in advance and retreat dates relate to various forcing parameters including radiation fluxes, temperature and wind (from numerical reanalyses), and the oceanic heat inflow through the Bering Strait (from in situ moorings). Of all variables considered, the retreat date is most strongly correlated (r ∼ 0.8) with the April through June Bering Strait heat inflow. After testing a suite of statistical linear models using several potential predictors, the best model for predicting the date of retreat includes only the April through June Bering Strait heat inflow, which explains 68% of retreat date variance. The best model predicting the ice advance date includes the July through September inflow and the date of retreat, explaining 67% of advance date variance. We address these relationships by discussing heat balances within the Chukchi Sea, and the hypothesis of oceanic heat transport triggering ocean heat uptake and ice-albedo feedback. Developing an operational prediction scheme for seasonal retreat and advance would require timely acquisition of Bering Strait heat inflow data. Predictability will likely always be limited by the chaotic nature of atmospheric circulation patterns

    Common variants of the TCF7L2 gene are associated with increased risk of type 2 diabetes mellitus in a UK-resident South Asian population

    Get PDF
    Background Recent studies have implicated variants of the transcription factor 7-like 2 (TCF7L2) gene in genetic susceptibility to type 2 diabetes mellitus in several different populations. The aim of this study was to determine whether variants of this gene are also risk factors for type 2 diabetes development in a UK-resident South Asian cohort of Punjabi ancestry. Methods We genotyped four single nucleotide polymorphisms (SNPs) of TCF7L2 (rs7901695, rs7903146, rs11196205 and rs12255372) in 831 subjects with diabetes and 437 control subjects. Results The minor allele of each variant was significantly associated with type 2 diabetes; the greatest risk of developing the disease was conferred by rs7903146, with an allelic odds ratio (OR) of 1.31 (95% CI: 1.11 – 1.56, p = 1.96 × 10-3). For each variant, disease risk associated with homozygosity for the minor allele was greater than that for heterozygotes, with the exception of rs12255372. To determine the effect on the observed associations of including young control subjects in our data set, we reanalysed the data using subsets of the control group defined by different minimum age thresholds. Increasing the minimum age of our control subjects resulted in a corresponding increase in OR for all variants of the gene (p ≤ 1.04 × 10-7). Conclusion Our results support recent findings that TCF7L2 is an important genetic risk factor for the development of type 2 diabetes in multiple ethnic groups

    Temporal estimation in prediction motion tasks is biased by a moving destination

    Get PDF
    © 2018 The Authors. An ability to predict the time-to-contact (TTC) of moving objects that become momentarily hidden is advantageous in everyday life and could be particularly so in fast-ball sports. Prediction motion (PM) experiments have sought to test this ability using tasks where a disappearing target moves toward a stationary destination. Here, we developed two novel versions of the PM task in which the destination either moved away from (Chase) or toward (Attract) the moving target. The target and destination moved with different speeds such that collision occurred 750, 1,000 or 1,250 ms after target occlusion. To determine if domain-specific experience conveys an advantage in PM tasks, we compared the performance of different sporting groups ranging from internationally competing athletes to nonsporting controls. There was no difference in performance between sporting groups and non-sporting controls but there were significant and independent effects on response error by target speed, destination speed, and occlusion period. We simulated these findings using a revised version of the linear TTC model of response timing for PM tasks (Yakimoff, Bocheva, & Mitrania, 1987; Yakimoff, Mateeff, Ehrenstein, & Hohnsbein, 1993) in which retinal input from the moving destination biases the internal representation of the occluded target. This revision closely reproduced the observed patterns of response error and thus describes a means by which the brain might estimate TTC when the target and destination are in motion

    Ligamentum arteriosum calcification on paediatric postmortem computed tomography.

    Get PDF
    BACKGROUND: Ligamentum arteriosum calcification may be a normal finding in some children, although the frequency has not been well described. OBJECTIVE: To estimate the frequency of ligamentum arteriosum calcification in children at postmortem imaging. MATERIALS AND METHODS: We conducted a single-centre retrospective review of paediatric postmortem CT and chest radiographic imaging over a 6-year period (January 2012 to December 2018). Two independent reviewers assessed the presence of calcification on imaging. We calculated descriptive statistical analysis of ligamentum arteriosum calcification frequency and association with age and gender. RESULTS: During the study period, 220 children underwent whole-body postmortem CT and 182 underwent radiographic imaging. The frequency was higher on postmortem CT than plain radiographs (67/220, 30.5% vs. 3/182, 1.6%) and was highest in children ages 1-7 years (53.6-66.7%), with gradual reduction in frequency in older children, and none in children older than 12 years. There was no gender predilection. CONCLUSION: In the postmortem setting, ligamentum arteriosum calcification is a common finding in children <8 years of age. It can be better identified on postmortem CT than chest radiographs. Radiologists new to reporting postmortem paediatric CT studies should recognise this as a common normal finding to avoid unnecessary further investigations at autopsy

    Plasmodium knowlesi Genome Sequences from Clinical Isolates Reveal Extensive Genomic Dimorphism.

    Get PDF
    Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and pathobiology

    Synthesis-View: visualization and interpretation of SNP association results for multi-cohort, multi-phenotype data and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Initial genome-wide association study (GWAS) discoveries are being further explored through the use of large cohorts across multiple and diverse populations involving meta-analyses within large consortia and networks. Many of the additional studies characterize less than 100 single nucleotide polymorphisms (SNPs), often include multiple and correlated phenotypic measurements, and can include data from multiple-sites, multiple-studies, as well as multiple race/ethnicities. New approaches for visualizing resultant data are necessary in order to fully interpret results and obtain a broad view of the trends between DNA variation and phenotypes, as well as provide information on specific SNP and phenotype relationships.</p> <p>Results</p> <p>The Synthesis-View software tool was designed to visually synthesize the results of the aforementioned types of studies. Presented herein are multiple examples of the ways Synthesis-View can be used to report results from association studies of DNA variation and phenotypes, including the visual integration of p-values or other metrics of significance, allele frequencies, sample sizes, effect size, and direction of effect.</p> <p>Conclusions</p> <p>To truly allow a user to visually integrate multiple pieces of information typical of a genetic association study, innovative views are needed to integrate multiple pieces of information. As a result, we have created "Synthesis-View" software for the visualization of genotype-phenotype association data in multiple cohorts. Synthesis-View is freely available for non-commercial research institutions, for full details see <url>https://chgr.mc.vanderbilt.edu/synthesisview</url>.</p
    • …
    corecore